sexta-feira, 28 de abril de 2017

From Machine Learning to Deep Learning



  • Data Preprocessing
    • Feature selection
    • Dimensionality Reduction (Feature extraction)
      • Principal Component Analysis (PCA)
      • Linear Discriminant Analysis (LDA)
      • Kernel PCA
      • Quadratic Discriminant Analysis (QDA)
  • Regression (both linear and non-linear)
    • Simple Linear Regression
    • Multiple Linear Regression
    • Polynomial Regression
    • Support Vector for Regression (SVR)
    • Decision Tree Classification
    • Random Forest Classification

  • Classification
    • Logistic Regression
    • K-Nearest Neighbors (K-NN)
    • Support Vector Machine (SVM)
    • Kernel SVM
    • Naive Bayes
    • Decision Tree Classification
    • Random Forest Classification
  • Clustering
    • K-Means Clustering
    • Hierarchical Clustering
  • Association Rule Learning
    • Apriori
    • Eclat
  • Reinforcement Learning
    • Upper Confidence Bound (UCB)
    • Thompson Sampling
  • Natural Language Processing
  • Deep Learning
    • Artificial Neural Networks for Regression and Classification
    • Convolutional Neural Networks for Computer Vision
    • Recurrent Neural Networks for Time Series Analysis
    • Self Organizing Maps for Feature Extraction
    • Deep Boltzmann Machines for Recommendation Systems
    • Auto Encoders for Recommendation Systems



Sem comentários:

Enviar um comentário